Developing a Deep Learning Facemask Detection Prototype in Two Days

Facemasks are a critical tool for fighting the spread of COVID-19, and are proven to be most effective when face coverings are worn universally. As stores and businesses reopen, ensuring all occupants wear a facemask is essential. However, the additional resources required to monitor patrons can further strain businesses already struggling to meet other sanitation and social distancing guidelines. Deep learning solutions are capable of automatically detecting anyone in violation of facemask guidelines, saving employee time and ensuring safer environments.

DEPLOYING DEEP LEARNING
Deep learning is a form of machine learning that uses neural networks with many “deep” layers between the input and output nodes. By training a network on a large data set, a model is created that can be used to make accurate predictions based on unseen data. In this case, the network can be trained to detect not only facemasks, but if a facemask is worn correctly on a person’s face.

A fully functioning deep learning system can be developed and deployed in a matter of days. Using a FLIR Firefly DL camera, FLIR engineers developed a system for detecting compliance and flagging users who may be in violation of PPE (Personal Protection Equipment) guidelines. The facemask detection dataset used 2 publicly available libraries with over 1000 images to provide examples of people with, without, and incorrectly wearing facemasks in different environments. Other cameras suited for this purpose include the Blackfly S GigE – for more information about FLIR machine vision solutions, contact sales.

AN ADAPTABLE SOLUTION
Each image in the facemask dataset was annotated with bounding boxes showing object locations and class labels indicating which faces had the mask on, which did not, and if they were worn appropriately. Deep learning developers and solution integrators can easily expand this solution to cover more complex and robust use cases for deployment in the real world. For example, the neural network can be trained to detect face shields, gowns, gloves, and other PPE within high risk / high traffic environments like hospitals and airports.

Learn more about building a deep learning solution on a budget, getting started with the Firefly DL, and FLIR temperature screening solutions.

Über Teledyne FLIR

Founded in 1978, FLIR Systems is a world-leading industrial technology company focused on intelligent sensing solutions for defense, industrial, and commercial applications. FLIR Systems’ vision is to be "The World’s Sixth Sense, creating technologies to help professionals make more informed decisions that save lives and livelihoods. For more information, please visit www.flir.com and follow @flir.

Firmenkontakt und Herausgeber der Meldung:

Teledyne FLIR
Schwieberdinger Straße 60
71636 Ludwigsburg
Telefon: +49 (7141) 488817-0
Telefax: +49 (7141) 488817-99
http://www.flir.de/MV

Ansprechpartner:
Nessren Bazerbachi
Press
Telefon: +34 (602) 102-965
E-Mail: n.bazerbachi@mepax.com
Für die oben stehende Pressemitteilung ist allein der jeweils angegebene Herausgeber (siehe Firmenkontakt oben) verantwortlich. Dieser ist in der Regel auch Urheber des Pressetextes, sowie der angehängten Bild-, Ton-, Video-, Medien- und Informationsmaterialien. Die United News Network GmbH übernimmt keine Haftung für die Korrektheit oder Vollständigkeit der dargestellten Meldung. Auch bei Übertragungsfehlern oder anderen Störungen haftet sie nur im Fall von Vorsatz oder grober Fahrlässigkeit. Die Nutzung von hier archivierten Informationen zur Eigeninformation und redaktionellen Weiterverarbeitung ist in der Regel kostenfrei. Bitte klären Sie vor einer Weiterverwendung urheberrechtliche Fragen mit dem angegebenen Herausgeber. Eine systematische Speicherung dieser Daten sowie die Verwendung auch von Teilen dieses Datenbankwerks sind nur mit schriftlicher Genehmigung durch die United News Network GmbH gestattet.

counterpixel